Logarithmic Functions

The graph of the function $f(x) = 3^x$ is given below:

Solve the equation $3^x = 9$

Solve the equation $3^x = \frac{1}{3}$

Solve the equation $3^x = \sqrt{3}$ $x = \frac{1}{2}$

Solve the equation $3^x = 7$

x = 1.771

Solve the equation $3^x = 26$

x 2 2,966

We need an invoise of the bunction for

Definition:

If b and a are positive real numbers then $log_b a$ is the number you would raise b by to get a. In other words, $log_b a$ is the unique solution to the equation $b^x = a$.

How do you interpret the following expressions:

$$log_2 8 = X$$
, $2^{\times} = 8$, $X = 3$

$$log_2\sqrt{2} = X$$
, $Q^X = \sqrt{2}$, $X = \frac{1}{2}$

$$log_2 10 = X$$
, $\mathcal{I}^{\times} = 10$, $\times \stackrel{?}{\sim} 3.322$

$$log_{2}10 = X$$
, $J^{X} = 10$, $X \stackrel{?}{\sim} 3.322$ graph $J^{X} = 7/2$, $J^{X} = 7$

$$log_2 0 = X$$
, $z^X = 0$, no solution

$$log_3(-2) = X$$
, $3^X = -2$, no solution

The exponential equation $a^x=y$ is equivalent to the logarithmic equation $\log_a y=x$

$$a^x = y$$
 \Leftrightarrow $log_a y = x$

$$2^3 = 8 \qquad \Leftrightarrow \qquad log_{_2}8 = 3$$

$$4^x = 64 \qquad \Leftrightarrow \qquad log_4 64 = x$$

$$7^x = 29 \qquad \Leftrightarrow \qquad log_7 29 = x$$

Basic Logarithm Properties:

$$log_b 1 = 0$$
 (because $b^0 = 1$)
 $lob_b b = 1$ (because $b^1 = b$)
 $log_b (b^x) = x$
 $b^{log_b x} = x$

Simplify the following expressions:

$$log_2 \frac{1}{16}$$
 = $log_2 a^{-4}$ = -4

$$log_{5}\left(5\sqrt{5}\right) = log_{5} - 5^{(1+\frac{1}{2})} = 1.5^{-}$$

$$log_{16}2 = log_{16}(16)^{\frac{1}{4}} = \frac{1}{4}$$

The common logarithm and the natural logarithm:

 $log_e x$ is called the natural log and is always written ln x.

 $log_{\scriptscriptstyle 10} x$ is called the common logarithm and is usually written as $log\,x$

Simplify the following if possible or give a 2 decimal approximation using a calculator if necessary:

$$ln1 = 0$$

$$ln(e^3) = 3$$

$$\ln\frac{1}{e^2} = \ln(e^{-2}) = -2$$

$$log 100 = log_{10} 100 = log_{10} 10^2 = 2$$

$$log 0.0001 = log_{10} lo^{-4} = -4$$